Chemical Polysialylation and In Vivo Tetramerization Improve Pharmacokinetic Characteristics of Recombinant Human Butyrylcholinesterase-Based Bioscavengers

نویسندگان

  • S. S. Terekhov
  • I. V. Smirnov
  • O. G. Shamborant
  • T. V. Bobik
  • D. G. Ilyushin
  • A. N. Murashev
  • I. A. Dyachenko
  • V. A. Palikov
  • V. D. Knorre
  • A. A. Belogurov
  • N. A. Ponomarenko
  • E. S. Kuzina
  • D. D. Genkin
  • P. Masson
  • A. G. Gabibov
چکیده

Organophosphate toxins (OPs) are the most toxic low-molecular compounds. The extremely potent toxicity of OPs is determined by their specificity toward the nerve system. Human butyrylcholinesterase (hBChE) is a natural bioscavenger against a broad spectrum of OPs, which makes it a promising candidate for the development of DNA-encoded bioscavengers. The high values of the protective index observed for recombinant hBChE (rhBChE) make it appropriate for therapy against OP poisoning, especially in the case of highly toxic warfare nerve agents. Nevertheless, large-scale application of biopharmaceuticals based on hBChE is restricted due to its high cost and extremely rapid elimination from the bloodstream. In the present study, we examine two approaches for long-acting rhBChE production: I) chemical polysialylation and II) in-vivo tetramerization. We demonstrate that both approaches significantly improve the pharmacokinetic characteristics of rhBChE (more than 5 and 10 times, respectively), which makes it possible to use rhBChE conjugated with polysialic acids (rhBChE-CAO) and tetrameric rhBChE (4rhBChE) in the treatment of OP poisonings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical polysialylation of human recombinant butyrylcholinesterase delivers a long-acting bioscavenger for nerve agents in vivo.

The creation of effective bioscavengers as a pretreatment for exposure to nerve agents is a challenging medical objective. We report a recombinant method using chemical polysialylation to generate bioscavengers stable in the bloodstream. Development of a CHO-based expression system using genes encoding human butyrylcholinesterase and a proline-rich peptide under elongation factor promoter contr...

متن کامل

Catalytic Bioscavengers Against Toxic Esters, an Alternative Approach for Prophylaxis and Treatments of Poisonings

Bioscavengers are biopharmaceuticals that specifically react with toxicants. Thus, enzymes reacting with poisonous esters can be used as bioscavengers for neutralization of toxic molecules before they reach physiological targets. Parenteral administration of bioscavengers is, therefore, intended for prophylaxis or pre-treatments, emergency and post-exposure treatments of intoxications. These en...

متن کامل

Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana

To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express enzymatically active FLAG-tagged plant made recombinant butyrylcholinesterase (rBChE) in Nicotia...

متن کامل

Excessive Labeling Technique Provides a Highly Sensitive Fluorescent Probe for Real-time Monitoring of Biodegradation of Biopolymer Pharmaceuticals in vivo

Recombinant proteins represent a large sector of the biopharma market. Determination of the main elimination pathways raises the opportunities to significantly increase their half-lives in vivo. However, evaluation of biodegradation of pharmaceutical biopolymers performed in the course of pre-clinical studies is frequently complicated. Noninvasive pharmacokinetic and biodistribution studies in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015